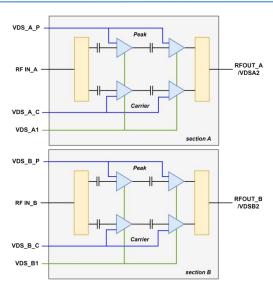


Product datasheet

Description


The H8G1822M100P is a LDMOS MMIC Integrated Asymmetrical Doherty based on 2-Stage with 100W saturated output power covering frequency range from 1.805 - 2.170 GHz.

The amplifier is 50 Ω Input matched with integrated input divider and output combiner into a small compact footprint which makes it ideal for integration.

OMP780-16

Over Molded Plastic Package 16 pin

Block Diagram

H8G1822M100P Block Diagram

Features

Operating Frequency Range: 1.805 - 2.170 GHz

Operating Drain Voltage: +28V

Saturation Output Power: 100W

Power Average: 6.3W

• 50 Ω Input matched

Integrated Input Divider

Integrated Output Combiner

Integrated Asymmetrical Doherty Final Stage

Efficiency: 26.6%@2.11GHz, WCDMA

Gain: 26.6dB@2.11GHz, WCDMA

Small footprint: OMP780-16, 20.75x9.96mm

Applications

- 3GPP 5G NR FR1 n1/34/39 and 4G-LTE B1/3/4/25/34/37/39/70
- Power Amplifier for Micro and Macro Base Stations
- Active Antenna Array for 5G mMIMO
- Repeaters/DAS
- Mobile Infrastructure

Ordering Information

Part Number	Description
H8G1822M100P	Reel Package
H8G1822M100PEVB	1.805 - 2.170 GHz EVB

100W, 1.805 - 2.170 GHz LDMOS MMIC Amplifier

Product datasheet

Typical Performance

RF Characteristics (Pulsed CW)

Freq (GHz)	P3dB (dBm)	Gain (dB)	Eff (%)	IRL (dB)
1.805	51.3	26.3	28.1	21.2
1.840	51.4	26.1	26.7	23.6
1.880	51.5	26.1	26.0	27.5
2.110	50.5	26.4	26.3	13.4
2.140	50.3	26.5	26.2	13.1
2.170	50.1	26.4	26.0	12.4

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, $IDQ_Carrier = 290mA$, $IDQ_Peak = 60mA$, PW = 100us, DC = 10%, $Input/Output\ Load\ 50\ \Omega$ test on WATECH Application Board

RF Characteristics (WCDMA)

Freq (GHz)	Gain (dB)	Eff (%)	ACPR* @5MHz (dBc)	ACPR* @10MHz (dBc)
1.805	26.2	27.0	-38.1	-52.6
1.840	26.2	26.2	-40.5	-54.8
1.880	26.3	26.0	-40.2	-56.4
2.110	26.6	26.6	-40.0	-54.2
2.140	26.7	26.5	-39.3	-52.3
2.170	26.6	26.2	-38.4	-51.2

Test conditions unless otherwise noted: 25 °C, VVDD = +28Vdc, IDQ_Carrier= 290mA, IDQ_Peak= 60mA, PAVG = 38 dBm 1C-WCDMA 5MHz Signal, 7.6 dB PAR @ 0.01% CCDF, Input/Output Load 50 Ω test on WATECH Application Board *Uncorrected DPD

Absolute Maximum Ratings

Parameter	Range/Value	Unit
Drain Voltage (VDSS)	-0.5 to +65	V
Gate Voltage (V _{GS})	-5 to +10	V
Drain Voltage (VDD)	0 to +28	V
Storage Temperature (Tstg)	-55 to +150	°C
Case Temperature (Tc)	-40 to +125	°C
Junction Temperature (T _J)	-40 to +175	°C

100W, 1.805 - 2.170 GHz LDMOS MMIC Amplifier

Product datasheet

Electrical Specification

DC Characteristics

Parameter	Conditions	Min	Тур	Max	Unit
Breakdown Voltage V(BR)DSS	Vgs=0V, Ids=100uA	65	-	-	V
Gate-Source Threshold Voltage V _{GS(th)}	Vgs=28V, Ids=17uA	1.2	-	2.0	V
Drain Leakage Current loss	Vgs=0V, Vds=28V	-	-	0.5	uA
Gate Leakage Current Igss	Vgs=10V, Vds=0V	-	-	0.05	uA

Test conditions unless otherwise noted: 25 °C

RF Characteristics (Pulsed CW)

Parameter	Freq (GHz)	Min	Тур.	Max	Unit
P3dB	2.170	46.5	47.0	-	dBm

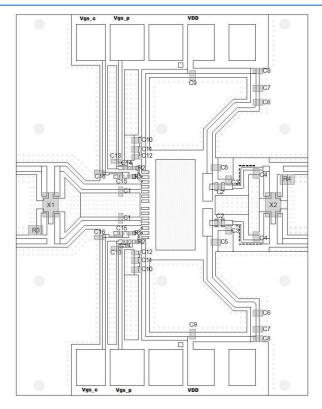
Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, $IDQ_Carrier = 145mA$, $IDQ_Peak = 30mA$, PW = 100us, DC = 10%, $Input/Output\ Load\ 50\ \Omega$ test on WATECH Production Board (single path test board)

RF Characteristics (WCDMA)

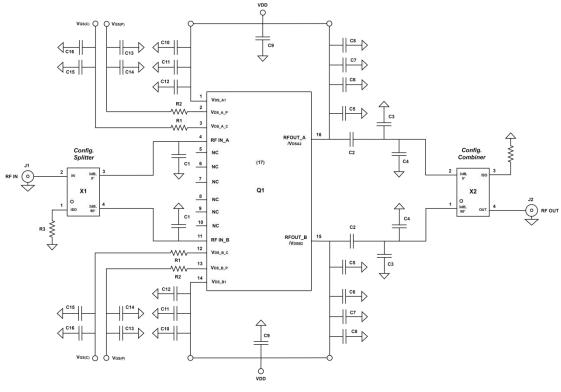
Parameter	Conditions	Min	Тур.	Max	Unit
Frequency	2.170				GHz
Gain	PAVG = 35 dBm	25.5	26.5	28.5	dB
Eff	PAVG = 35 dBm	24	26	-	%
IRL	PAVG = 35 dBm	10	15	-	dB
ACPR@5MHz*	PAVG = 35 dBm	-	-33	-28	dBc

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ_Carrier= 145mA, IDQ_Peak= 35mA, 1C-WCDMA 20MHz Signal, 7.6 dB PAR @ 0.01% CCDF, Input/Output Load 50 Ω test on WATECH Production Board (single path test board) *Uncorrected DPD

Load Mismatch Test


Condition	Test Result
VSWR=10:1, at all Phase Angles, VDD=+28Vdc, IDQ_Carrier= 290mA,	No Dovice
IDQ_Peak= 60mA, PAVG = 38 dBm, Frequency 2.170 GHz, test on WATECH	No Device
Application Board	Degradation

Thermal Information


Parameter	Condition	Value (Typ)	Unit
Thermal Resistance	Tcase= 90°C, 1C-WCDMA 5MHz	1.02	°C /W
Junction to Case (Rтн)	Signal, 7.6 dB PAR, PAVG = 35 dBm		0 /

Product datasheet

H8G1822M100P 1.805 - 2.170 GHz Reference Design (50 x40 mm)

EVB Layout

EVB Schematic

100W, 1.805 - 2.170 GHz LDMOS MMIC Amplifier

Product datasheet

Bill of Materials (BoM) - H8G1822M100P 1.805 - 2.170 GHz Reference Design

Reference	Value	Description	Manufacturer	P/N	
Q1		100W, 1.805 - 2.170 GHz	Watech	H8G1822M100P	
QI	-	LDMOS MMIC PA	vvatecii	Hodiozzivituup	
C1	0p7F (x2)	Multi-Layer Ceramic	Murata	GQM2195G2ER70BB12	
	OP 7. (7.2)	Capacitor		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
C2	3pF (x2)	Multi-Layer Ceramic	Murata	GQM2195G2E3R0BB12	
	1 ()	Capacitor		,	
С3	0p8F (x2)	Multi-Layer Ceramic	Murata	GQM2195G2ER80BB12	
	. , ,	Capacitor			
C4, C5	1p3F (x2)	Multi-Layer Ceramic	Murata	GQM2195G2E1R3BB12	
,		Capacitor			
C6	10pF (x2)	Multi-Layer Ceramic	Murata	GQM2195G2E100GB12	
		Capacitor		00,1112330111000311	
C7, C12,	1nF/0805 (x2)	Multi-Layer Ceramic	Murata	GRM21A5C2E102JWA1	
C14, C15	11117 0003 (XZ)	Capacitor	Widiata	GIIIIZI7 IS CZETOZS VV7 (I	
C8, C11,	1uF/0805 (x2)	Multi-Layer Ceramic	Murata	GRM21BC72A105KE01	
C13, C16	101/0005 (XZ)	Capacitor	Iviarata	GRIVIZIDO ZATIOSREOI	
R1, R2	5Ω/0805 (x2)	Thick Film Resistor	YAGEO	RC0805FR-074R99L	
R3, R4	50Ω/2010 (x2)	Thick Film Resistor	YAGEO	RC2010FK-0749R9L	
X1, X2	-	Hybrid Coupler 3dB, 90°	Anaren	X3C19F1-03S	
DCD	Rogers 4350B, er = 3.66; Thickness= 20 mil (0.508 mm); Thickness copper plating =				
PCB	35 μm (1oz)				

Product datasheet

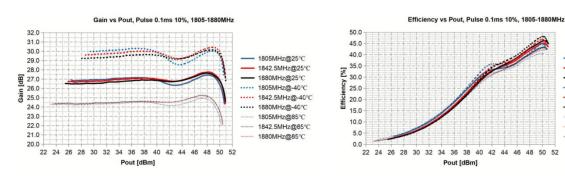
1805MHz@25°C

--- 1842.5MHz@25°C

----- 1805MHz@-40°C

..... 1842.5MHz@-40°C

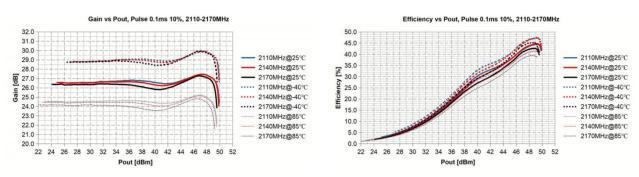
---- 1880MHz@-40°C


1805MHz@85°C

1880MHz@85°C

1842.5MHz@85°C

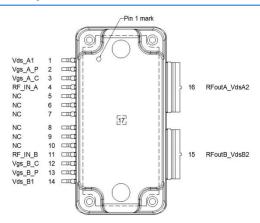
- 1880MHz@25°C


Performance Plots

Pulsed CW, Gain vs Pout, 1.805 - 1.880 GHz

Pulsed CW, Efficiency vs Pout, 1.805 - 1.880 GHz

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ_Carrier= 290mA, IDQ_Peak= 60mA test on WATECH Application Board


Pulsed CW, Gain vs Pout, 2.110 - 2.170 GHz

Pulsed CW, Efficiency vs Pout, 2.110 - 2.170 GHz

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ_Carrier= 290mA, IDQ_Peak= 60mA test on WATECH Application Board

Product datasheet

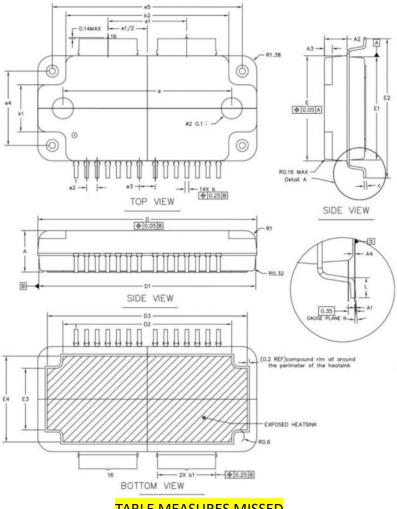
Pin Configuration and Description

Pinout Device Configuration

Pin Number	Label	Description
1	VDS_A1	Drain-Source Voltage Driver section A
2	VDS_A_P	Gate-Source Voltage Peak section A
3	VDS_A_C	Gate-Source Voltage Carrier section A
4	RF IN_A	RF Input section A
5	NC	Not Connected
6	NC	Not Connected
7	NC	Not Connected
8	NC	Not Connected
9	NC	Not Connected
10	NC	Not Connected
11	RF IN_B	RF Input section B
12	VDS_B_C	Gate-Source Voltage Carrier section B
13	VDS_B_P	Gate-Source Voltage Peak section B
14	VDS_B1	Drain-Source Voltage Driver section B
15	RFOUT_B/VDSB2	RF Output section B/Drain-Source Voltage Final section B
16	RFOUT_A/VDSA2	RF Output section A/Drain-Source Voltage Final section A
17	GND	Ground

100W, 1.805 - 2.170 GHz LDMOS MMIC Amplifier

Product datasheet


Package Marking and Dimensions

WITTELH

100W, 1.805 - 2.170 GHz LDMOS MMIC Amplifier

Product datasheet

TABLE MEASURES MISSED

Package Dimensions

100W, 1.805 - 2.170 GHz LDMOS MMIC Amplifier

Product datasheet

Tape and Reel Information

Tape & Reel Packaging Descriptions

Handling Precautions

Parameter	Grade
Moisture Sensitivity Level MSL	3

Parameter	Rating	Standard
ESD – Human Body Model (HBM)	Class 1B	JESD22-A114
ESD – Human Body Model (MM)	Class A	EIA/JESD22-A115
ESD – Charged Device Model (CDM)	Class III	JESD22-C101

100W, 1.805 - 2.170 GHz LDMOS MMIC Amplifier

Product datasheet

RoHS Compliance

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

Datasheet Status

Document status	Product status	Definition
Objective Datasheet	Design simulation	Product objective specification
Preliminary Datasheet	Customer sample	Engineering samples and first test results
Product Datasheet	Mass production	Final product specification

Abbreviations

Acronym	Definition
LDMOS	Laterally-Diffused Metal-Oxide Semiconductor
CW	Continuous Waveform
MMIC	Monolithic Microwave Integrated Circuit

Revision history

Document ID	Datasheet Status	Release Date	Revision Version
Rev 1.0	Product	Jan 2022	Product release
Rev 1.1	Product	March 2023	New format based on English
			version datasheet

100W, 1.805 - 2.170 GHz LDMOS MMIC Amplifier

Product datasheet

For the latest specifications, additional product information, worldwide sales and distribution locations and information about WATECH:

• Web: <u>www.watechelectronics.com</u>

• Email: MKT@huatai-elec.com

For technical questions and application information:

• Email: MKT@huatai-elec.com

Important Notice

Information in this document is believed to be accurate and reliable. However, WATECH does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

"Typical" parameters are the average values expected by WATECH in large quantities and are provided for information purposes only. All information and specifications contained herein are subject to change without notice and customers should obtain and verify the latest relevant information before placing orders for WATECH products.

The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Applications that are described herein for any of these products are for illustrative purposes only. WATECH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using WATECH products, and WATECH accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the WATECH product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third-party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

WATECH products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety- critical systems or equipment, nor in applications where failure or malfunction of a WATECH product can reasonably be expected to result in personal injury, death or severe property or environmental damage. This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.