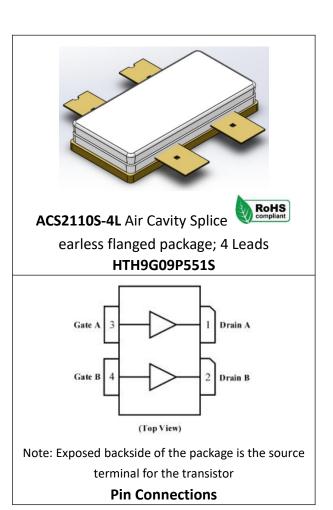
WATTELH

HTH9G09P551S 550W, 300 - 960 MHz LDMOS Amplifier

Product datasheet

Description


The HTH9G09P551S is an unmatched discrete LDMOS Power Amplifier with 550W saturated output power covering frequency range from 300 - 960 MHz.

Features

- Operating Frequency Range: 300 960 MHz
- Operating Drain Voltage: 48V
- Saturation Output Power: 550W
- Excellent thermal stability due to low thermal resistance package
- Enhanced robustness design without device degradation
- Internally integrated enhanced ESD design

Applications

- Private network communication
- Amplifier for Micro and Macro Base Stations
- Repeaters/DAS
- Mobile Infrastructure
- 3GPP 5G NR FR1
 n5/8/12/13/14/18/20/26/28/29/67/85/100
- 4G-LTE
 B5/8/12/13/14/17/18/19/20/26/28/67/85/
 103

Ordering Information

Part Number	Description		
HTH9G09P551S	Tray Package		
HTH9G09P551S EVB	578-678 MHz EVB		

WATECH

HTH9G09P551S 550W, 300 - 960 MHz LDMOS Amplifier

Product datasheet

Typical Performance

RF Characteristics (CW, PW=100us, DC=10%)

Freq (MHz)	P5dB (dBm)	Gain (dB)	Eff (%)@49dBm	P5_Eff(%)	IRL(dB)
578	58.0	19.1	55.4	62.8	-10
628	58.1	19.8	53.3	60.2	-11
678	57.7	19.3	50.0	62.9	-12

Test conditions unless otherwise noted: 25 °C, VDD = 50Vdc, IDQ = 600mA , Vgsp=Vgsc-1.6V, Pout=49dBm, test on WATECH Application Board

RF Characteristics (WCDMA, PAR=9.9dB)

Freq (MHz)	Gain(dB)	Eff(%)	ACPR 5MHz(dBc)	ACPR 10MHz(dBc)	IRL (dB)
578	18.9	51.5	-29.3	-50.9	-11
628	19.6	49.8	-31.1	-51.4	-12
678	18.9	48.2	-33.0	-51.9	-12

Test conditions unless otherwise noted: 25 °C, VDD = 50Vdc, IDQ=600mA, Vgsp=Vgsc-1.6V, Pout=49dBm, test on WATECH Application Board

Absolute Maximum Ratings

Parameter	Range/Value	Unit
Drain voltage (VDSS)	-0.5 to +120	V
Gate voltage (V _{GS})	-5 to +10	V
Storage Temperature (Tstg)	-55 to +150	°C
Junction Temperature (T _J)	-40 to +225	°C

Electrical Specification

DC Characteristics (Carrier)

Parameter	Conditions	Min	Тур	Max	Unit
Breakdown Voltage V(BR)DSS	Vgs=0V, Ids=156uA	115	-	-	V
Gate-Source Threshold Voltage V _{GS(th)}	Vds=10V, Ids=156uA	2.2	2.7	3.1	V
Drain Leakage Current IDSS	Vds=110V, Vgs=0V	-	-	500	nA
Gate Leakage Current Igss	Vds=0V, Vgs=10V	-	-	500	nA

Product datasheet

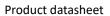
DC Characteristics (Peak)

Parameter	Conditions	Min	Тур	Max	Unit
Breakdown Voltage V(BR)DSS	Vgs=0V, Ids=230uA	115	-	-	V
Gate-Source Threshold Voltage V _{GS(th)}	Vds=10V, Ids=230uA	2.2	2.7	3.1	V
Drain Leakage Current Ibss	Vds=110V, Vgs=0V	-	-	500	nA
Gate Leakage Current Igss	Vds=0V, Vgs=10V	-	-	500	nA

Load Mismatch Test

Condition	Test Result
VSWR=10:1, at all Phase Angles, V _{DD} =48Vdc, IDQ=400mA, Vgsp=Vgsc-1.8V,	No Device
f=942.5MHz, WCDMA signal, Pout=52dBm.	Degradation

Thermal Information


Parameter	Condition	Value (Typ)	Unit	
Thermal Resistance	Feq=942.5MHz, Tcase=80C, WCDMA 1C,	0.46	°C /W	
Junction to Case (Rтн)	Pout=49 dBm	0.40	C / W	

Load Pull Performance Carrier

Test conditions unless otherwise noted: 25 °C, VDD = 48Vdc, IDQ= 400mA, PW = 100us, DC= 10%

	Max Output Power-Carrier						
Freq (MHz)	Z_source (Ω)	Z_load [1] (Ω)	Gain (dB)	P3dB (dBm)	P3dB (W)	Eff (%)	
760	1.0-j*5.0	2.2-j*0	24.8	55.1	321	68.5	
860	2.1-j*8.0	1.9-j*0.3	23.2	54.9	312	64.1	
960	7.2-j*14.7	1.7-j*0.5	22.6	54.8	305	64.3	

[1] Load impedance for optimum P3dB pout-Carrier

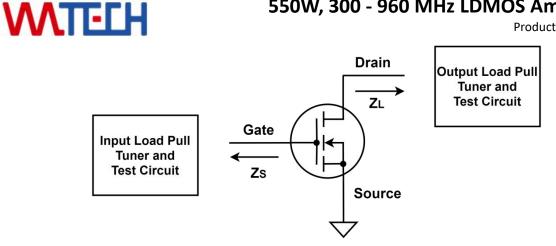
Max Drain Efficiency-Carrier						
Freq (MHz)	Z_source (Ω)	Z_load [2] (Ω)	Gain (dB)	P3dB (dBm)	P3dB (W)	Eff (%)
760	1.0-j*5.0	2.1+j*1.5	26.6	53.7	234	77.3
860	2.1-j*8.0	1.5+j*1.1	25.5	53.3	215	74.8
960	7.2-j*14.7	1.7+j*0.5	24.5	53.9	240	72.2

[2] Load impedance for optimum P3dB efficiency-Carrier

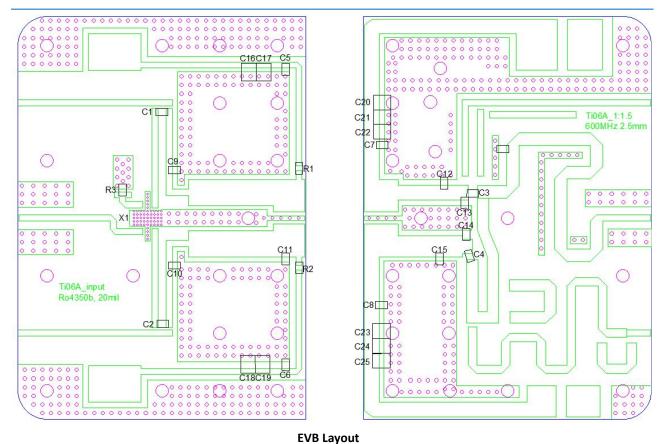
Load Pull Performance Peak

WATELH

Test conditions unless otherwise noted: 25 °C, VDD = 48Vdc, IDQ= 500mA, PW = 100us, DC= 10%


Max Output Power-Peak						
Freq (MHz)	Z_source (Ω)	Z_load [3] (Ω)	Gain (dB)	P3dB (dBm)	P3dB (W)	Eff (%)
760	1.1-j*5.2	1.4-j*0.5	24.3	56.8	482	67.5
860	2.0-j*8.5	1.4-j*1.0	22.6	56.7	468	62.2
960	7.5-j*16.0	1.5-j*0.9	21.5	56.9	485	63.6

[3] Load impedance for optimum P3dB pout-Peak


	Max Drain Efficiency-Peak						
Freq (MHz)	Z_source (Ω)	Z_load [4] (Ω)	Gain (dB)	P3dB (dBm)	P3dB (W)	Eff (%)	
760	1.1-j*5.2	1.2+j*0.5	26.1	55.1	321	75.2	
860	2.0-j*8.5	1.2+j*0	24.6	55.6	363	72.5	
960	7.5-j*16.0	1.2-j*0.2	23.7	55.4	347	68.8	

[4] Load impedance for optimum P3dB efficiency-Peak

Product datasheet

Z_source : Measured impedance presented to the input of the device at the package reference plane Z_load : Measured impedance presented to the output of the device at the package reference plane

HTH9G09P551S 578-678MHz Reference Design

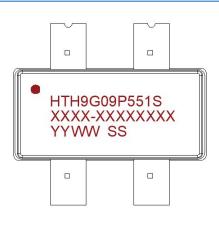
Product datasheet

Bill of Materials (BoM) - HTH9G09P551S

578-678MHz Reference Design

Reference	Value	Description Manufacturer		P/N
C1 - C8	150pF	0805 Chip Capacitor Murata		GQM2195C2E151JB12
C9 - C10	9pF	0805 Chip Capacitor	Murata	GQM2195G2E9R0BB12
C11	24pF	0805 Chip Capacitor Murata		GQM2195C2E240JB12
C12 - C13	9.1pF	0805 Chip Capacitor	Murata	GQM2195G2E9R1BB12
C14	13pF	0805 Chip Capacitor	Murata	GQM2195C2E130JB12
C15	18pF	0805 Chip Capacitor	Murata	GQM2195C2E180JB12
C16-C25	10uF	1210 Chip Capacitor Murata		GRM32EC72A106KE05L
R1,R2	10 Ω	0805 Chip Resistor SMD		
X1	3dB,90°	Hybrid Coupler	Anaren	X3C07F1-03S
R3	50Ω,25W	Load Resistor	Anaren	C16A50Z4
РСВ	Rogers4350B,20mil thickness			

Performance Plots

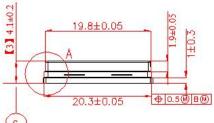

Pulsed CW, Gain and Efficiency vs Pout

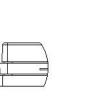
Test conditions unless otherwise noted: 25 °C, VDS = 50Vdc, IDQ= 600mA, Vpeak=2.1V, PW = 100us, DC= 10% test on WATECH Application Board

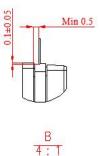
Product datasheet

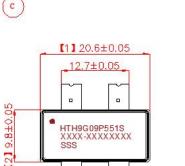
WATECH

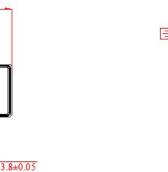
Package Marking and Dimensions

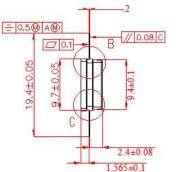


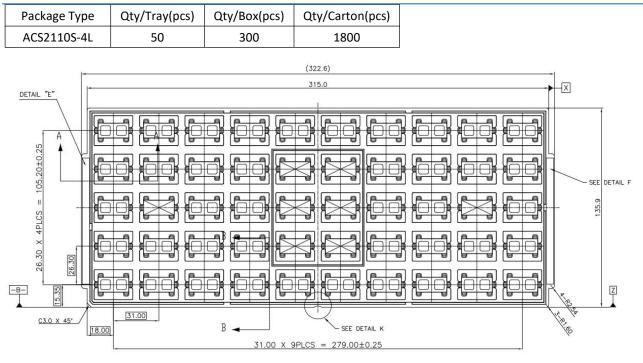

- Line1 (fixed): Device name in W/O
- Line2 (unfixed): Marking Lot No in W/O


(Sample: E596-20140001)


• Line3 (unfixed): Date Code + JY This Marking SPEC only stipulates the content of Marking. For marking requirements such as font and size, please refer to the latest version of "Watech Product Printing Specification"


Marking




Package Dimensions

WATECH

HTH9G09P551S 550W, 300 - 960 MHz LDMOS Amplifier

Product datasheet

Tape and Reel Information

Tape & Reel Packaging Descriptions

Handling Precautions

Parameter	Grade
Moisture Sensitivity Level MSL	3

Parameter	Rating	Standard	
ESD – Human Body Model (HBM)	Class 1B	JESD22-A114	ATTENTION OBSERVE PRECAUTIONS FOR HANDLING
ESD–Me Model (MM)	Class A	EIA/JESD22-A115	FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES
ESD – Charged Device Model (CDM)	Class III	JESD22-C101	

RoHS Compliance

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

Product datasheet

Datasheet Status

Document status	Product status	Definition
Objective Datasheet	Design simulation	Product objective specification
Preliminary Datasheet	Customer sample	Engineering samples and first test results
Product Datasheet	Mass production	Final product specification

Abbreviations

Acronym	Definition	
LDMOS	Laterally-Diffused Metal-Oxide Semiconductor	
CW	Continuous Waveform	

Revision history

Document ID	Datasheet Status	Release Date	Revision Version
Rev 1.0	Preliminary	Feb. 2023	Preliminary
Rev 1.1	Preliminary	Jul. 2023	New format based on English version datasheet
Rev 2.0	Product	Sep. 2023	Update load pull test result
Rev 2.1	Product	March 2024	Update packaging information

WATTELH

Contact Information

HTH9G09P551S 550W, 300 - 960 MHz LDMOS Amplifier

Product datasheet

For the latest specifications, additional product information, worldwide sales and distribution locations and information about WATECH:

- Web: <u>www.watechelectronics.com</u>
- Email: <u>MKT@huatai-elec.com</u>

For technical questions and application information:

• Email: <u>MKT@huatai-elec.com</u>

Important Notice

Information in this document is believed to be accurate and reliable. However, WATECH does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

"Typical" parameters are the average values expected by WATECH in large quantities and are provided for information purposes only. All information and specifications contained herein are subject to change without notice and customers should obtain and verify the latest relevant information before placing orders for WATECH products.

The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Applications that are described herein for any of these products are for illustrative purposes only. WATECH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using WATECH products, and WATECH accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the WATECH product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third-party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

WATECH products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety- critical systems or equipment, nor in applications where failure or malfunction of a WATECH product can reasonably be expected to result in personal injury, death or severe property or environmental damage. This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.